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Note 

A Test of a Modified Algorithm for Computing 
Spherical Harmonic Coefficients Using an FFT 

1. INTRODUCTION 

This note describes the results of testing a modified method based on an algo- 
rithm by Dilts [ 1 ] for computing the spherical harmonic expansion coefficients for 
a function on a sphere using a two-dimensional FFT. The new version of the Dilts 
program eliminates problems of overflow and large storage requirements encoun- 
tered when harmonic degree values of I> 16 are computed, thus allowing the 
determination of coefficients for high I values (,< 300). However, results from 
timing tests indicate that the new version of the Dilts program is not practical for 
computing spherical harmonic expansion coefficients for large I due to the very long 
CPU times required for execution of the program. The most effective technique 
remains the one pioneered by Brown [2]. 

The development of helioseismology [3], wherein the oscillations of the sun are 
analyzed to infer the physical state of the solar interior, has created a need for a fast 
spherical harmonic transformation procedure that can be used at high values of I, 
the spherical harmonic degree. In the context of the GONG (Global Oscillation 
Network Group) project, observations of the full solar disk with a resolution of 
256 x 256 pixels will be obtained every minute nearly continuously for three years. 
Such observations can in principle provide information on global modes of oscilla- 
tions with 16 300. Since for each mode with a given 1 there are 2Z+ 1 nondegenerate 
modes with differing values of m, the azimuthal order, the projection of the data 
onto some 1.8 x lo5 spherical harmonics must be performed each minute to avoid 
a huge data backlog. This is in addition to other processing that must be done on 
each image. A proposed experiment on the SOHO spacecraft would produce an 
even larger amount of data, obtaining images with 1024 x 1024 pixel resolution. 
There is thus great interest in the solar physics community in the development of 
fast spherical harmonic transforms. Recently, an algorithm appeared in the 
literature that held the potential of satisfying these stringent requirements [ 11. Here 
we report on a modification to the algorithm that permitted its use at high 1 values, 
and on its performance. 

The object of a spherical harmonic transform is to determine the coefficients F,,,, 
of the expansion of a data imagef(8,b) on a sphere, 

.f(e, 4) = f i: F,,,, Y,m(R 41, (1) 
/=o m= -/ 
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where F,, is given by 

F,m = 1” x j; X(e, 4) f(4 4) sin 0 de 4. (2) 

The Dilts algorithm is based on a Fourier representation of the spherical harmonic 
functions, 

Y,(8, $4) = c,mPy(cos e) eim@ (3) 

in which Py(cos f3) is the associated Legendre function of harmonic degree 1 and 
order m. The normalization coefficient C,, is given by 

c (21+1)(/-m)! 1’2 
!Wl 

= 

[ 1 47c(f+m)! 

In the Dilts method, Y,m is represented by a two-dimensional Fourier series, 

Y,JB, I$) = f: B~me’(ke+mO 
k= -I 

(5) 

in which ei(ke+m@) is a single Fourier component and Br is the Fourier expansion 
coefficient. 

The Dilts method for computing the Bi* involves a complex quantity aim, the 
coefficient resulting from the Fourier expansion of the Py. When I# m, these afm are 
computed using the recursion relation 

a~+-+-” = +[u~G”-~ +a?+, + i(l+m)(a$!;‘-at”,;‘)] (6) 

when k # I, and the boundary relation 

c~~+~,~=$[u~?I, +i(l+m)ufT”,‘] (7) 

when k = 1. When 1= m, the relation 

i/(21)! 
a:l_2jc4/(/-j)!j! (8) 

is used. Seed values for values of 1, m, and k of 0 and 1 are used to initialize the 
recursion process, and the Bim are finally computed using 

Bf’ = Cr,@. (9) 

After the Bim are computed, the image data f is interpolated from the observed 
(sin 19, sin $) grid onto an evenly spaced grid in 8 and 4 and is then transformed via 
a two-dimensional FFT, 

f(0, g5)= f f fabei(oo+bg), 
a= --N b= -hi (10) 
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where N is the number of pixels along the two dimensions of the image. Here, the 
image is square, but this is not required. The desired spherical harmonic coefficients 
F/, are then determined from 

(11) 

Dilts calculated the Bi! once and then stored them, using them in Eq. (11) as 
needed. 

2. PROGRAM MODIFICATIONS 

We implemented the Dilts algorithm on a VAX 8600 computer. Two problems 
immediately arose when attempting to use the algorithm for high I values (I> 16). 
The first problem was the large storage space required to keep the entire set of Bf’. 
The second problem was the overflows generated by the factorials in C,, and LI:~_,~. 

The amount of storage space required for the program should be substantially 
less than the memory available in the core of the computer, since the i/o time 
required for page faulting on a virtual memory computer such as a VAX is much 
greater than the average floating point operation execution time. For I= 250, the 
amount of storage space required is about 5.3 Mb. This space was greatly reduced 
by noticing that the recursion relations require storing only the coefficients for the 
previous 1 value. Thus, by keeping only the coefficients for the previous I value and 
recalculating the Bkm as needed rather than storing the entire set, the storage space 
was greatly reduced, but at the expense of increasing the execution time. Memory 
requirements and execution time were further reduced by exploiting the various 
symmetry rules involved in computing the Bf’. The most useful rule allowed us to 
avoid calculating and storing the Bi” when they were zero; this is true when I is odd 
and k is even, or when 1 is even and k is odd. We were further able to reduce 
storage space by exploiting the fact that, while the Bim are complex quantities, they 
are either purely real (if m is even) or purely imaginary (if m is odd). Finally, only 
the positive m values need be computed, since the negative m values involve only 
a sign change. By using all of these rules, we were able to reduce the storage 
requirements for 1= 250 from 5.3 Mb to about 60 kb, a reduction of nearly two 
orders of magnitude. 

When the Dilts algorithm is used for values of I> 16, overflows occur due to the 
large factorial terms in the evaluation of C,, and a:-*,. To cure this, new recursion 
relations were developed that incorporated the factorial calculation in the computa- 
tion of C,,,, into the recursion relations for the aim, thereby producing direct recur- 
sion relations for the Bi” and eliminating the overflows. 
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The new recursion relations are as follows. For I # k or I# m, 

Bi+ll., = D/,,, i[BI!‘- 1 + Bim+, + i(l+m) E,,(Bi’!;’ - Bim+; ‘)I. 

The relation for the I= k boundary is 

B, /+ 1.m = D ,m :[ Bf”_ I + i(l+ m) E,, Bf?‘“; ‘1 

where 

C &=+LE= 
[ 

(21+3)(1-m+ 1) “* 

Im (21+ l)(l+m+ 1) 1 
and 

C 1 1 
112 

E,m=CLm-I= (Z+m)(l-m+ 1) ’ 

Finally, the relation for the I = m boundary is 

B'+','+'_ 
/+I-2j - 
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(12) 

(13) 

(14) 

(15) 

(16) 

All of the factorials have been eliminated in these equations, allowing coefficients 
for high values of I to be computed without overflow. The seed values must now 
be multiplied by the appropriate values of C,,,, to initialize the recursion. Hand 
calculation of a few values and comparison with Table I of the Dilts paper shows 
that these new recursion relations are correct. 

3. TIMING TESTS 

After solving the problems of storage and overflows, timing tests of the new Bim 
generating program were performed on a VAX 8600. The results showed that the 
CPU time required to compute all of the BP up to a maximum degree L was 
proportional to L3. When the modified program was run for an L of 250, the CPU 
time required was approximately 500 s. This time does not include the time 
required for the two-dimensional image interpolation and FFT, nor does it include 
the time required to evaluate Eq. (11) for the F,m. The slow execution time of the 
new Bim routine lies in the large number of operations required to evaluate the 
recursion relations for high 1. For the new Bim recursion relations, the number of 
operations required is approximately 75L3. 

Of even more consequence is the number of operations involved in evaluating 
(1 l), given by Dilts as 401N. Note, however, that this number of operations is 
required to evaluate (11) for a single mode with a particular choice of I and m. If 
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one desires to compute F/,,, for all available modes in the image, then Lx N and, 
since there are a total of L(2L + 1) modes, the operation count to evaluate (11) for 
all modes becomes 40L2(L)(2L + 1) = 80L4 + 40L3. The total number of operations 
in the Dilts algorithm to compute the spherical harmonic coefficients for every 
mode up to L using an N x N image is 

qN2 + nFFT N’logN+ 80L3N+40L2N+75L3, (17) 

where n,. is the number of operations required to interpolate the data f onto an 
evenly spaced grid, and FIFFT is a constant reflecting the number of operations in the 
FFT. Typically nfz 20 and nFFT x 25. If all of the modes available in the image are 
desired, then the number of operations will be dominated by the 80L4 term. When 
the sums in Eq. (11) were tested for L of 250, the CPU time required was about 
10 h. This renders the procedure impractical for helioseismology, but it still remains 
viable for applications where only low values of I need be computed. 

4. CONCLUSION 

We have modified and evaluated the Dilts [ 1 ] algorithm for spherical harmonic 
transforms as applied to helioseismology. While we have overcome the problems of 
storage and overflow, the algorithm proves to be far too slow when extended to 
high values of 1. The current best method appears still to be that first implemented 
by Brown [2], wherein first the image is interpolated from a (sin 0, sin 4) grid to 
a (sin 8,d) grid. Next, a one-dimensional FFT is performed in the 4 coordinate, 
immediately producing the azimuthal, or m-dependence of the spherical harmonic 
coefficients. Finally, the associated Legendre functions Py are generated using 
recursion relations in the (sin 6) direction, and the data is projected onto these 
functions by multiplication and a one-dimensional integration. There are different 
strategies for generating the P;" [4], but with the current one in use at NSO, we 
can perform a spherical harmonic transform, including the interpolation and FFT 
for all 1 values and every other m value up to 250 on an 244 x 192 image in 
50 CPU s on the VAX 8600. This is much more acceptable than the 10 CPU h per 
image that would be spent using the Dilts algorithm, and allows the inference of 
internal solar structure (e.g., [S]) to be accomplished much more efficiently. 
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